direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C22×C4×F5, D10⋊5C42, D10.11C24, C10⋊(C2×C42), D5⋊(C2×C42), C5⋊(C22×C42), D5.(C23×C4), C20⋊4(C22×C4), (C2×C10)⋊3C42, (C22×C20)⋊16C4, C2.2(C23×F5), C10.4(C23×C4), (C23×F5).5C2, (C2×F5).9C23, C23.66(C2×F5), Dic5⋊7(C22×C4), (C4×D5).92C23, (C22×Dic5)⋊20C4, D10.38(C22×C4), C22.56(C22×F5), (C22×F5).24C22, (C22×D5).282C23, (C23×D5).137C22, (C2×C4×D5)⋊23C4, (C2×C20)⋊14(C2×C4), (C4×D5)⋊21(C2×C4), (D5×C22×C4).37C2, (C2×Dic5)⋊35(C2×C4), (C2×C4×D5).416C22, (C22×C10).80(C2×C4), (C2×C10).98(C22×C4), (C22×D5).91(C2×C4), SmallGroup(320,1590)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C22×C4×F5 |
Generators and relations for C22×C4×F5
G = < a,b,c,d,e | a2=b2=c4=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 1386 in 498 conjugacy classes, 276 normal (13 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C23, C23, D5, C10, C10, C42, C22×C4, C22×C4, C24, Dic5, C20, F5, D10, D10, C2×C10, C2×C42, C23×C4, C4×D5, C2×Dic5, C2×C20, C2×F5, C22×D5, C22×C10, C22×C42, C4×F5, C2×C4×D5, C22×Dic5, C22×C20, C22×F5, C23×D5, C2×C4×F5, D5×C22×C4, C23×F5, C22×C4×F5
Quotients: C1, C2, C4, C22, C2×C4, C23, C42, C22×C4, C24, F5, C2×C42, C23×C4, C2×F5, C22×C42, C4×F5, C22×F5, C2×C4×F5, C23×F5, C22×C4×F5
(1 46)(2 47)(3 48)(4 49)(5 50)(6 41)(7 42)(8 43)(9 44)(10 45)(11 56)(12 57)(13 58)(14 59)(15 60)(16 51)(17 52)(18 53)(19 54)(20 55)(21 66)(22 67)(23 68)(24 69)(25 70)(26 61)(27 62)(28 63)(29 64)(30 65)(31 76)(32 77)(33 78)(34 79)(35 80)(36 71)(37 72)(38 73)(39 74)(40 75)
(1 26)(2 27)(3 28)(4 29)(5 30)(6 21)(7 22)(8 23)(9 24)(10 25)(11 36)(12 37)(13 38)(14 39)(15 40)(16 31)(17 32)(18 33)(19 34)(20 35)(41 66)(42 67)(43 68)(44 69)(45 70)(46 61)(47 62)(48 63)(49 64)(50 65)(51 76)(52 77)(53 78)(54 79)(55 80)(56 71)(57 72)(58 73)(59 74)(60 75)
(1 11 6 16)(2 12 7 17)(3 13 8 18)(4 14 9 19)(5 15 10 20)(21 31 26 36)(22 32 27 37)(23 33 28 38)(24 34 29 39)(25 35 30 40)(41 51 46 56)(42 52 47 57)(43 53 48 58)(44 54 49 59)(45 55 50 60)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 71 6 76)(2 73 10 79)(3 75 9 77)(4 72 8 80)(5 74 7 78)(11 66 16 61)(12 68 20 64)(13 70 19 62)(14 67 18 65)(15 69 17 63)(21 51 26 56)(22 53 30 59)(23 55 29 57)(24 52 28 60)(25 54 27 58)(31 46 36 41)(32 48 40 44)(33 50 39 42)(34 47 38 45)(35 49 37 43)
G:=sub<Sym(80)| (1,46)(2,47)(3,48)(4,49)(5,50)(6,41)(7,42)(8,43)(9,44)(10,45)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,66)(22,67)(23,68)(24,69)(25,70)(26,61)(27,62)(28,63)(29,64)(30,65)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75), (1,26)(2,27)(3,28)(4,29)(5,30)(6,21)(7,22)(8,23)(9,24)(10,25)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75), (1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,19)(5,15,10,20)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,51,46,56)(42,52,47,57)(43,53,48,58)(44,54,49,59)(45,55,50,60)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,71,6,76)(2,73,10,79)(3,75,9,77)(4,72,8,80)(5,74,7,78)(11,66,16,61)(12,68,20,64)(13,70,19,62)(14,67,18,65)(15,69,17,63)(21,51,26,56)(22,53,30,59)(23,55,29,57)(24,52,28,60)(25,54,27,58)(31,46,36,41)(32,48,40,44)(33,50,39,42)(34,47,38,45)(35,49,37,43)>;
G:=Group( (1,46)(2,47)(3,48)(4,49)(5,50)(6,41)(7,42)(8,43)(9,44)(10,45)(11,56)(12,57)(13,58)(14,59)(15,60)(16,51)(17,52)(18,53)(19,54)(20,55)(21,66)(22,67)(23,68)(24,69)(25,70)(26,61)(27,62)(28,63)(29,64)(30,65)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75), (1,26)(2,27)(3,28)(4,29)(5,30)(6,21)(7,22)(8,23)(9,24)(10,25)(11,36)(12,37)(13,38)(14,39)(15,40)(16,31)(17,32)(18,33)(19,34)(20,35)(41,66)(42,67)(43,68)(44,69)(45,70)(46,61)(47,62)(48,63)(49,64)(50,65)(51,76)(52,77)(53,78)(54,79)(55,80)(56,71)(57,72)(58,73)(59,74)(60,75), (1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,19)(5,15,10,20)(21,31,26,36)(22,32,27,37)(23,33,28,38)(24,34,29,39)(25,35,30,40)(41,51,46,56)(42,52,47,57)(43,53,48,58)(44,54,49,59)(45,55,50,60)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,71,6,76)(2,73,10,79)(3,75,9,77)(4,72,8,80)(5,74,7,78)(11,66,16,61)(12,68,20,64)(13,70,19,62)(14,67,18,65)(15,69,17,63)(21,51,26,56)(22,53,30,59)(23,55,29,57)(24,52,28,60)(25,54,27,58)(31,46,36,41)(32,48,40,44)(33,50,39,42)(34,47,38,45)(35,49,37,43) );
G=PermutationGroup([[(1,46),(2,47),(3,48),(4,49),(5,50),(6,41),(7,42),(8,43),(9,44),(10,45),(11,56),(12,57),(13,58),(14,59),(15,60),(16,51),(17,52),(18,53),(19,54),(20,55),(21,66),(22,67),(23,68),(24,69),(25,70),(26,61),(27,62),(28,63),(29,64),(30,65),(31,76),(32,77),(33,78),(34,79),(35,80),(36,71),(37,72),(38,73),(39,74),(40,75)], [(1,26),(2,27),(3,28),(4,29),(5,30),(6,21),(7,22),(8,23),(9,24),(10,25),(11,36),(12,37),(13,38),(14,39),(15,40),(16,31),(17,32),(18,33),(19,34),(20,35),(41,66),(42,67),(43,68),(44,69),(45,70),(46,61),(47,62),(48,63),(49,64),(50,65),(51,76),(52,77),(53,78),(54,79),(55,80),(56,71),(57,72),(58,73),(59,74),(60,75)], [(1,11,6,16),(2,12,7,17),(3,13,8,18),(4,14,9,19),(5,15,10,20),(21,31,26,36),(22,32,27,37),(23,33,28,38),(24,34,29,39),(25,35,30,40),(41,51,46,56),(42,52,47,57),(43,53,48,58),(44,54,49,59),(45,55,50,60),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,71,6,76),(2,73,10,79),(3,75,9,77),(4,72,8,80),(5,74,7,78),(11,66,16,61),(12,68,20,64),(13,70,19,62),(14,67,18,65),(15,69,17,63),(21,51,26,56),(22,53,30,59),(23,55,29,57),(24,52,28,60),(25,54,27,58),(31,46,36,41),(32,48,40,44),(33,50,39,42),(34,47,38,45),(35,49,37,43)]])
80 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | ··· | 4H | 4I | ··· | 4AV | 5 | 10A | ··· | 10G | 20A | ··· | 20H |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 5 | ··· | 5 | 1 | ··· | 1 | 5 | ··· | 5 | 4 | 4 | ··· | 4 | 4 | ··· | 4 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | F5 | C2×F5 | C2×F5 | C4×F5 |
kernel | C22×C4×F5 | C2×C4×F5 | D5×C22×C4 | C23×F5 | C2×C4×D5 | C22×Dic5 | C22×C20 | C22×F5 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 2 | 12 | 2 | 2 | 32 | 1 | 6 | 1 | 8 |
Matrix representation of C22×C4×F5 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 32 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 40 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 32 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
0 | 0 | 0 | 32 | 0 | 0 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,40,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,40,40,40,40],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,32,0,0,32,0,0,0,0,0,0,0,32,0] >;
C22×C4×F5 in GAP, Magma, Sage, TeX
C_2^2\times C_4\times F_5
% in TeX
G:=Group("C2^2xC4xF5");
// GroupNames label
G:=SmallGroup(320,1590);
// by ID
G=gap.SmallGroup(320,1590);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,136,6278,818]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^4=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations